Abstract
The health and safety of lithium-ion batteries are closely related to internal parameters. The rapid development of electric vehicles has boosted the demand for online battery diagnosis. As the most potential automotive battery diagnostic technology, AC impedance spectroscopy needs to face the problems of complex test environment and high system cost. Here, we propose a DC impedance spectroscopy (DCIS) method to achieve low-cost and high-precision diagnosis of automotive power batteries. According to the resistance–capacitance structure time constant, this method can detect the battery electrolyte resistance, the solid electrolyte interphase resistance and the charge transfer resistance by controlling the pulse time of the DC resistance measurement. Unlike AC impedance spectroscopy, DCIS does not rely on frequency domain impedance to obtain battery parameters. It is a time-domain impedance spectroscopy method that measures internal resistance through a time function. Through theoretical analysis and experimental data, the effectiveness of the DCIS method in battery diagnosis is verified. According to the characteristics of DCIS, we further propose a fast diagnostic method for power batteries. The working condition test results show that this method can be used to diagnose online battery life and safety.
Funder
Natural Science Foundation of Shanghai
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference35 articles.
1. Global EV Outlook 2020
https://www.iea.org/reports/global-ev-outlook-2020
2. Electrically Propelled Road Vehicles—Test Specification for Lithium-Ion Traction Battery Packs and Systems: Part 2: High-Energy Applications,2012
3. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application
4. Cycle aging of commercial NMC/graphite pouch cells at different temperatures
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献