A Study into the γ-Al2O3 Binder Influence on Nano-H-ZSM-5 via Scaled-Up Laboratory Methanol-to-Hydrocarbon Reaction

Author:

Liu Bonan,Zhu Xiaochun,Zhao Jun,Wang Duanda,Ma Wangjing

Abstract

Development of a laboratory selected zeolite into an industrial zeolite-based catalyst faces many challenges due to the scaling-up of reaction which requires many upgrades of the as-prepared catalyst such as an enhanced physical strength. To meet this requirement zeolite powders are normally mixed with various binders and then shaped into bulky bodies. Despite the fact there are a lot of reports on the positive features brought by the shaping treatment, there is still a great need to further explore the zeolite properties after the binder introduction. In this case, a lot of studies have been continuously conducted, however, many results were limited due to the usage of much smaller laboratory samples rather than a real factory plant, and more importantly, the maximal/minimal proportion of zeolites in the shaped catalyst. In this research, our shaped catalysts are based on nano-H-ZSM-5 zeolites and alumina (γ–Al2O3) binder while keeping the zeolite content to a maximum. H-ZSM-5 samples and Al-H-ZSM-5 samples are compared in the designed methanol-to-hydrocarbons reaction. With a reduced weight-hourly-space-velocity (WHSV = 1.5 h−1) and a higher reaction pressure (6 bar) favorable for aromatization, together with the tailored instruments for catalyst volume scale-up (20 g samples are tested each time), our tests focus on the early period catalytic performance (during the first 5 h). Unlike a normal laboratory test, the results from the scaled-up experiments provide important guidance for a potential industrial application. The role of the γ–Al2O3 introduced, not only as binder, but also performing as co-catalyst, on tailoring the early time product distribution, and the corresponding coke deposition is systematically investigated and discussed in details. Notably, the Si/Al ratio of H-ZSM-5 still has a decisive influence on the reaction performance of the Al-H-ZSM-5 samples.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3