The Effect of Catalyst Placement on the Stability of a U-Bend Catalytic Heat-Recirculating Micro-Combustor: A Numerical Investigation

Author:

Kaisare Niket S.ORCID,Di Sarli ValeriaORCID

Abstract

This study investigates the combined effect of catalyst placement and solid thermal conductivity on the stability of a U-bend catalytic heat-recirculating micro-combustor. The CFD code ANSYS Fluent 2020 R1 was used for two-dimensional simulations of lean premixed propane/air combustion by varying the inlet gas velocity, i.e., the input power. Three configurations were compared at low (3 W/(m K)) and high (30 W/(m K)) wall thermal conductivity: (A) the configuration in which both inner and outer walls are catalyst coated; (B) only the inner wall is catalyst coated; and (C) only the outer wall is catalyst coated. Numerical results show that, at low thermal conductivity, configuration (B) exhibits the same resistance to extinction as configuration (A), whereas at high thermal conductivity, configurations (B) and (C) exhibit much lower resistance to blowout than configuration (A). Accordingly, for low-power systems, which typically lose stability via extinction and thus require low-conductive materials, an optimal catalyst placement can be the partial coating of configuration (B). Conversely, for high-power systems, which are prone to blowout and thus require high-conductivity materials, a full coating of both the inner and outer walls is needed to guarantee higher stability. To elucidate these findings, a detailed analysis of the combustion behavior of the three configurations is presented.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3