Promoting Role of Amorphous Carbon and Carbon Nanotubes Growth Modes of Methane Decomposition in One-Pot Catalytic Approach

Author:

Chen LifangORCID,Noreña Luis Enrique,Wang Jin AnORCID,Limas Roberto,Arellano UlisesORCID,González Vargas Oscar ArturoORCID

Abstract

We report the simultaneous production of hydrogen fuel and carbon nanotubes (CNTs) via methane dehydrogenation catalyzed with Ni/SBA-15. Most Ni nanoparticles (NPs) with size between 10 and 30 nm were highly dispersed on SBA-15 and most of them had a strong interaction with the support. At temperatures ranging from 500 to 800 °C, methane could be decomposed to release hydrogen with 100% selectivity at conversion between 51 and 65%. There was no CO or CO2 detectable in the reaction fluent. In the initial stage of the reaction, amorphous carbon and dehydrogenated methane species adsorbed on the Ni NPs promoted the CH4 decomposition. The amorphous carbon atoms were then transformed into carbon nanotubes which chiefly consisted of a multiwall structure and grew towards different orientations via a tip-growth or a base-growth modes, controlled by the interaction strength between the Ni NPs and the SBA-15 support. Reaction temperature affected not only methane conversion, but also the diffusion of carbon atoms on/in the Ni NPs and their precipitation at the interfaces. At higher temperature, bamboo-like CNTs or onion-like metal-encapsulated carbons were formed, mainly due to the rate of carbon atom formation greater than that of carbon precipitation for CNTs construction. The CNTs formation mechanisms are discussed and their growth modes under different conditions are proposed.

Funder

Instituto Politécnico Nacional

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3