Abstract
The synthesis of a sulfated silica catalyst and its modification with Ni and/or Mo metal, along with its application for the hydrocracking of fresh and waste frying oil into biogasoline, were conducted. Synthesis of the catalysts was initiated with the sulfation of silica (SiO2) material by H2SO4 using the sol-gel method. Ni and/or Mo metal were impregnated into the SO4/SiO2 matrix with concentration variations of 1, 2, and 3 wt%. The sulfation process and promotion by Molybdenum (Mo) metal in the modified catalyst successfully increased the catalytic activity and selectivity. Among the catalysts investigated, Ni-SS2 exhibited the best performance for the hydrocracking reaction with waste frying oil. This catalyst was able to achieve a conversion of the liquid product of 71.47% and a selectivity of 58.73% for the gasoline fraction (C5-C12). NiMo-SS3 showed the highest percentage of activity and selectivity in the hydrocracking of fresh frying oil at 51.50 and 43.22 wt%, respectively.
Funder
World Class Research (WCR) 2021
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献