Author:
Maraj Mudassar,Raza Ahmad,Wang Xinjie,Chen Jie,Riaz Khalid Nadeem,Sun Wenhong
Abstract
Recently, metal oxide-based nano-photocatalysts have gained much attention in waste water remediation due to their outstanding properties. In this report, a novel Mo-doped CuO nanomaterial was successfully prepared and utilized for the degradation of methylene blue water pollutant. The molybdenum content was varied from 1–5 wt.% to obtain the desired modified CuO based nanomaterials. The crystalline structures of as prepared materials were investigated by XRD diffraction technique, which explored the successful fabrication of monoclinic structure based CuO nanomaterials. For morphological study, SEM and HRTEM techniques were probed, which had also proved the successful preparation of nanoparticles-based material. SAED is used to check the crystallinity of the sample. The EDX and XPS analysis were performed to evaluate the elemental composition of Mo-doped CuO nanomaterials. The optical characteristics were explored via UV-vis and PL techniques. These studies have showed that the energy bandgap of CuO was decreased from 1.55 eV to 1.25 eV due to Mo doping. The photocatalytic efficiency of Mo-doped CuO nanomaterials was evaluated by degrading methylene blue (MB) under visible light-irradiation. Among different Mo-doped CuO based nanomaterials, the 4 wt.% Mo-doped CuO sample have shown highest degradation activity against MB dye. These results verified that the optimized material can be used for photocatalytic applications, especially for the purification of waste water.
Funder
the Bagui Talent of Guangxi province
Guangxi Science and Technology department
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献