Abstract
A Palladium-doped silica-supported heteropoly acid (HPW) (1%Pd-HPW/SiO2) bi-functional catalyst was produced using ultrasonic and conventional procedures. Both forms of catalyst were characterized with distinct analytical approaches in order to access the advantages of each one. The presence of the required functional groups in the catalyst was confirmed using FT-IR. The crystallinity of ultrasonically generated 1%Pd-HPW/SiO2 was confirmed with XRD. The existence of necessary elements in the catalyst was also suggested by XPS and EDX data. BET was used to calculate the surface area of the ultrasonically synthesized catalyst (395 m2 g−1), and it was found to be greater than that of the non-ultrasonic synthesized catalyst (382 m2 g−1). The N2 adsorption-desorption isotherm indicated mesoporous structures. The SEM morphology at a similar magnification exhibited quite different shapes. In comparison to traditional methods, ultrasonic approaches produce higher yields in less time and use less energy. Furthermore, the effect of the preparation method of the 1%Pd-HPW/SiO2 catalyst was extensively studied with respect to the synthesis of octahydroquinazolinones. Excellent product yields, a fast reaction time, and simple work-up methods are some peculiarities associated with the ultrasonically synthesized catalyst. The recycling study was also investigated and found suitable for up to four reaction cycles.
Subject
Physical and Theoretical Chemistry,Catalysis
Reference52 articles.
1. Preparing copper catalyst by ultrasound-assisted chemical precipitation method
2. Effects of ultrasound on the preparation of Cu-ZnO catalysts in a microreactor;Chen;Chin. J. Chem. Eng.,2019
3. Methods for Preparation of Catalytic Materials
4. Overview of Green Chemistry, an Effective Pollution Prevention;Onuegbu;CSN Mag.,2000
5. Green Power, the Positive Impacts of a Green Chemistry Service-Learning Project;Rake;Green Chem. Gen. Reactio,2005