Cu/ZSM5-Geopolymer 3D-Printed Monoliths for the NH3-SCR of NOx

Author:

Cepollaro Elisabetta Maria,Botti RenataORCID,Franchin GiorgiaORCID,Lisi Luciana,Colombo Paolo,Cimino StefanoORCID

Abstract

Geopolymer-based monoliths manufactured by direct ink writing, containing up to 60% by weight of presynthesized ZSM5 with low Si/Al ratio, were investigated as structured catalysts for the NH3-SCR of NOx. Copper was introduced as the active metal by ion exchange after a preliminary acid treatment of the monoliths. Monolithic catalysts were characterized by morphological (XRD and SEM), textural (BET and pore size distribution), mechanical (compressive strength), chemical (ICP–MS), redox (H2-TPR) and surface (NH3-TPD) analyses, showing the preservation of Cu-exchanged zeolite features in the composite monoliths. NH3-SCR tests, carried out on both monolithic and powdered samples in the temperature range 70–550 °C, confirmed that composite monoliths provide a very good activity and a high selectivity to N2 over the whole range of temperatures explored due to the hierarchical structure of the materials, in addition to a good mechanical resistance—mostly related to the geopolymer matrix.

Funder

Governo Italiano

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3