Abstract
Biofuels have been derived from various feedstocks by using thermochemical or biochemical procedures. In order to synthesise liquid and gas biofuel efficiently, single-atom catalysts (SACs) and single-atom alloys (SAAs) have been used in the reaction to promote it. SACs are made up of single metal atoms that are anchored or confined to a suitable support to keep them stable, while SAAs are materials generated by bi- and multi-metallic complexes, where one of these metals is atomically distributed in such a material. The structure of SACs and SAAs influences their catalytic performance. The challenge to practically using SACs in biofuel production is to design SACs and SAAs that are stable and able to operate efficiently during reaction. Hence, the present study reviews the system and configuration of SACs and SAAs, stabilisation strategies such as mutual metal support interaction and geometric coordination, and the synthesis strategies. This paper aims to provide useful and informative knowledge about the current synthesis strategies of SACs and SAAs for future development in the field of biofuel production.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献