Deactivation and Regeneration Method for Ni Catalysts by H2S Poisoning in CO2 Methanation Reaction

Author:

Ahn JeongyoonORCID,Chung Woojin,Chang Soonwoong

Abstract

The carbon dioxide (CO2) methanation reaction is a process that produces methane (CH4) by reacting CO2 and H2. Many studies have been conducted on this process because it enables a reduction of greenhouse gases and the production of energy with carbon neutrality. Moreover, it also exhibits a higher efficiency at low temperatures due to its thermodynamic characteristics; thus, there have been many studies, particularly on the catalysts that are driven at low temperatures and have high durability. However, with regards to employing this process in actual industrial processes, studies on both toxic substances that can influence catalyst performance and regeneration are still insufficient. Therefore, in this paper, the activity of a Ni catalyst before and after hydrogen sulfide (H2S) exposure was compared and an in-depth analysis was conducted to reveal the activity performance through the regeneration treatment of the poisoned catalyst. This study observed the reaction activity changes when injecting H2S during the CO2 + H2 reaction to evaluate the toxic effect of H2S on the Ni-Ce-Zr catalyst, in which the results indicate that the reaction activity decreases rapidly at 220 °C. Next, this study also successfully conducted a regeneration of the Ni-Ce-Zr catalyst that was poisoned with H2S by applying H2 heat treatment. It is expected that the results of this study can be used as fundamental data in an alternative approach to performance recovery when a small amount of H2S is included in the reaction gas of industrial processes (landfill gas, fire extinguishing tank gas, etc.) that can be linked to CO2 methanation.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference28 articles.

1. Fit for 55https://ec.europa.eu/info/sites/default/files/chapeau_communication.pdf

2. Review of power-to-gas projects in Europe;Christina;Energy Procedia,2018

3. SNG Generation via Power to Gas Technology: Plant Design and Annual Performance Assessment;Alessandra;Appl. Sci.,2020

4. State of the art and perspectives of CO2 methanation process concepts for power-to-gas applications;Manuel,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3