Oxygen-Deficient WO3/TiO2/CC Nanorod Arrays for Visible-Light Photocatalytic Degradation of Methylene Blue

Author:

Jiang Liaochuan,Gao XingyuanORCID,Chen Shaoling,Ashok Jangam,Kawi SibudjingORCID

Abstract

At present, TiO2 is one of the most widely used photocatalytic materials. However, the narrow response range to light limits the photocatalytic performance. Herein, we reported a successful construction of self-doped R-WO3/R-TiO2/CC nanocomposites on flexible carbon cloth (CC) via electrochemical reduction to increase the oxygen vacancies (Ovs), resulting in an enhanced separation efficiency of photo-induced charge carriers. The photocurrent of R-WO3/R-TiO2/CC at −1.6 V (vs. SCE) was 2.6 times higher than that of WO3/TiO2/CC, which suggested that Ovs could improve the response to sunlight. Moreover, the photocatalytic activity of R-WO3/TiO2/CC was explored using methylene blue (MB). The degradation rate of MB could reach 68%, which was 1.3 times and 3.8 times higher than that of WO3/TiO2/CC and TiO2/CC, respectively. Furthermore, the solution resistance and charge transfer resistance of R-WO3/R-TiO2/CC were obviously decreased. Therefore, the electrochemical reduction of nanomaterials enabled a promoted separation of photogenerated electron–hole pairs, leading to high photocatalytic activity.

Funder

Ministry of Education, Singapore

National Research Foundation, Singapore

Natural Science Foundation of Guangdong Province

Foundation for Distinguished Young Talents in Higher Education of Guangdong

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3