The Study of C3H6 Impact on Selective Catalytic Reduction by Ammonia (NH3-SCR) Performance over Cu-SAPO-34 Catalysts

Author:

Duan Yingfeng,Wang Lina,Zhang Yagang,Du Wei,Zhang Yating

Abstract

In present work, the catalytic performance of Cu-SAPO-34 catalysts with or without propylene during the NH3-SCR process was conducted, and it was found that the de-NOx activity decreased during low temperature ranges (<350 °C), but obviously improved within the range of high temperatures (>350 °C) in the presence of propylene. The XRD, BET, TG, NH3-TPD, NOx-TPD, in situ DRIFTS and gas-switch experiments were performed to explore the propylene effect on the structure and performance of Cu-SAPO-34 catalysts. The bulk characterization and TG results revealed that neither coke deposition nor the variation of structure and physical properties of catalysts were observed after C3H6 treatment. Generally speaking, at the low temperatures (<350 °C), active Cu2+ species could be occupied by propylene, which inhibited the adsorption and oxidation of NOx species, confining the SCR reaction rate and causing the deactivation of Cu-SAPO-34 catalysts. However, with the increase of reaction temperatures, the occupied Cu2+ sites would be recovered and sequentially participate into the NH3-SCR reaction. Additionally, C3H6-SCR reaction also showed the synergetic contribution to the improvement of NOx conversion at high temperature (>350 °C).

Funder

National Natural Science Foundation of China

Special Scientific Research Plan of Shaanxi Provincial Department of Education

Natural Science basic Research Program of Shaanxi Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3