CO2 Hydrogenation to Synthetic Natural Gas over Ni, Fe and Co–Based CeO2–Cr2O3

Author:

Khajonvittayakul Chalempol,Tongnan Vut,Amornraksa Suksun,Laosiripojana Navadol,Hartley Matthew,Hartley Unalome WetwatanaORCID

Abstract

CO2 methanation was studied over monometallic catalyst, i.e., Ni, Fe and Co; on CeO2-Cr2O3 support. The catalysts were prepared using one-pot hydrolysis of mixed metal nitrates and ammonium carbonate. Physicochemical properties of the pre- and post-exposure catalysts were characterized by X-Ray Powder Diffraction (XRD), Hydrogen Temperature Programmed Reduction (H2-TPR), and Field Emission Scanning Electron Microscope (FE-SEM). The screening of three dopants over CeO2-Cr2O3 for CO2 methanation was conducted in a milli-packed bed reactor. Ni-based catalyst was proven to be the most effective catalyst among all. Thus, a group of NiO/CeO2-Cr2O3 catalysts with Ni loading was investigated further. 40 % NiO/CeO2-Cr2O3 exhibited the highest CO2 conversion of 97.67% and CH4 selectivity of 100% at 290 °C. The catalytic stability of NiO/CeO2-Cr2O3 was tested towards the CO2 methanation reaction over 50 h of time-on-stream experiment, showing a good stability in term of catalytic activity.

Funder

Thailand Science Research and Innovation

King Mongkut's University of Technology North Bangkok

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3