Phenylalanine, Tyrosine, and DOPA Are bona fide Substrates for Bambusa oldhamii BoPAL4

Author:

Hsieh Chun-Yen,Huang Yi-Hao,Yeh Hui-Hsuan,Hong Pei-Yu,Hsiao Che-Jen,Hsieh Lu-ShengORCID

Abstract

Phenylalanine ammonia-lyase (PAL) links the plant primary and secondary metabolisms, and its product, trans-cinnamic acid, is derived into thousands of diverse phenylpropanoids. Bambusa oldhamii BoPAL4 has broad substrate specificity using L-phenylalanine, L-tyrosine, and L-3,4-dihydroxy phenylalanine (L-DOPA) as substrates to yield trans-cinnamic acid, p-coumaric acid, and caffeic acid, respectively. The optimum reaction pH of BoPAL4 for three substrates was measured at 9.0, 8.5, and 9.0, respectively. The optimum reaction temperatures of BoPAL4 for three substrates were obtained at 50, 60, and 40 °C, respectively. The Km values of BoPAL4 for three substrates were 2084, 98, and 956 μM, respectively. The kcat values of BoPAL4 for three substrates were 1.44, 0.18, and 0.06 σ−1, respectively. The major substrate specificity site mutant, BoPAL4-H123F, showed better affinity toward L-phenylalanine by decreasing its Km value to 640 μM and increasing its kcat value to 1.87 s−1. In comparison to wild-type BoPAL4, the specific activities of BoPAL4-H123F using L-tyrosine and L-DOPA as substrates retained 5.4% and 17.8% residual activities. Therefore, L-phenylalanine, L-tyrosine, and L-DOPA are bona fide substrates for BoPAL4.

Funder

Ministry of Science and Technology

Shin Kong WHS Memorial Hospital

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3