Engineered Stable 5-Hydroxymethylfurfural Oxidase (HMFO) from 8BxHMFO Variant of Methylovorus sp. MP688 through B-Factor Analysis

Author:

Wu Qiuyang,Lu Dong,Jin Shuming,Lu Jie,Wang Fang,Liu LuoORCID,Nie Kaili

Abstract

What is known as Furan-2,5-dicarboxylic acid (FDCA) is an attractive compound since it has similar properties to terephthalic acid. Further, 5-hydroxymethylfurfural oxidase (HMFO) is an enzyme, which could convert HMF to FDCA directly. Most wild types of HMFO have low activity on the oxidation of HMF to FDCA. The variant of 8BxHFMO from Methylovorus sp. MP688 was the only reported enzyme that was able to perform FDCA production. However, the stabilization of 8BxHMFO is still not that satisfactory, and further improvement is necessary for the industrial application of the enzyme. In this work, stability-enhanced HMFO from 8BxHFMO was engineered through employing B-factor analysis. The mutation libraries were created based on the NNK degeneracy of residues with the top ten highest B-factor value, and two of the effective mutants were screened out through the high throughput selection with the horseradish peroxidase (HRP)-Tyr assay. The mutants Q319K and N44G show a significantly increased yield of FDCA in the reaction temperature range of 30 to 40 °C. The mutant Q319K shows the best performance at 35 °C with a FDCA yield of 98% (the original 8BxHMFO was only 85%), and a half-life exceeding 72 h. Moreover, molecular dynamic simulation indicates that more hydrogen bonds are formed in the mutants, which improves the stability of the protein structure. The method could enhance the design of more stable biocatalysts; and provides potential for the further optimization and utilization of HMFO in biotechnological processes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3