Pre-Coking Strategy Strengthening Stability Performance of Supported Nickel Catalysts in Chloronitrobenzene Hydrogenation

Author:

Wang Ping,Wang Shiyi,Lin Ronghe,Mou Xiaoling,Ding Yunjie

Abstract

Supported nickel catalysts represent a class of important catalytic materials in selective hydrogenations, but applications are frequently limited by metal agglomeration or active-site blocking induced by the presence of hydrogen halides. Herein, we report a novel pre-coking strategy, exposing the nickel nanoparticles under methane dry reforming conditions to manipulate performance in the continuous-flow hydrogenation of 1,2-dichloro-4-nitrobenzene. Compared with the pristine nickel catalyst, the nanotube-like coke-modified nickel catalyst showed weakened hydrogenating ability, but much improved stability and slightly better selectivity to the target product, 3,4-dichloroaniline. Characterization results revealed that the strengthened stability performance can be mainly linked to the reduced propensity to retain chlorine species, which seems to block the access of the substrate molecules to the active sites, and thus is a major cause of catalyst deactivation on the pristine nickel catalyst. Coke deposition can occur on the pre-coked nickel catalyst but not on the pristine analog; however, the impact on the stability performance is much milder compared with that on chlorine uptake. In addition, the presence of coke is also beneficial in restraining the growth of the nickel nanoparticles. Generally, the developed method might provide an alternative perspective on the design of novel transition-metal-based catalytic materials for other hydrogenation applications under harsh conditions.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3