Pd–Au Bimetallic Catalysts for the Hydrogenation of Muconic Acid to Bio-Adipic Acid

Author:

Capelli SofiaORCID,Barlocco IlariaORCID,Scesa Federico Maria,Huang Xiaohui,Wang Di,Tessore FrancescaORCID,Villa AlbertoORCID,Di Michele AlessandroORCID,Pirola CarloORCID

Abstract

The hydrogenation reaction of muconic acid, produced from biomass using fermentative processes, to bio-adipic acid is one of the most appealing green emerging chemical process. This reaction can be promoted by catalysts based on a metal belonging to the platinum group, and the use of a second metal can preserve and increase their activity. Pd–Au bimetallic nanoparticle samples supported on high-temperature, heat-treated carbon nanofibers were prepared using the sol immobilization method, changing the Pd–Au molar ratio. These catalysts were characterized by TEM, STEM, and XPS analysis and tested in a batch reactor pressurized with hydrogen, where muconic acid dissolved in water was converted to adipic acid. The synthesized Pd–Au bimetallic catalysts showed higher activity than monometallic Au and Pd material and better stability during the recycling tests. Moreover, the selectivity toward the mono-unsaturated changed by decreasing the Pd/Au molar ratio: the higher the amount of gold, the higher the selectivity toward the intermediates.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3