Photodegradation of Carbol Fuchsin Dye Using an Fe2−xCuxZr2−xWxO7 Photocatalyst under Visible-Light Irradiation

Author:

Abu-Zurayk RundORCID,Khalaf Aya,Abbas Hussien A.ORCID,Nasr Rabab A.,Jamil Tarek S.,Al Bawab AbeerORCID

Abstract

Fe2−xCuxZr2−xWxO7 (x: 0, 0.05, 0.015) nanoparticles were synthesized following the Pechini method and characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS) measurements to be used as photocatalysts in colored water remediation. All of the prepared materials were crystallized in a cubic fluorite phase as the major phase. The band gap was reduced upon doping with W6+ and Cu2+ from 1.96 eV to 1.47 eV for Fe1.85Cu0.15Zr1.85W0.15O7. Carbol fuchsin (CF) dye was used to determine the photocatalytic degradation efficiency of the prepared catalysts. Degradation efficiency was directly proportional to the dopant’s concentration. Complete removal of 20 mg/L CF was achieved under optimal conditions (pH 9, and catalyst loading of 1.5 g/L) using Fe1.85Cu0.15Zr1.85W0.15O7. The degradation rate followed pseudo-first-order kinetics. The reusability for photocatalysts was tested five times, decreasing its efficiency by 4% after the fifth cycle, which indicates that the prepared Fe1.85Cu0.15Zr1.85W0.15O7 photocatalyst is a promising novel photocatalyst due to its superior efficiency in dye photodegradation.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3