Tuning the Electronic Structure of CoO Nanowire Arrays by N-Doping for Efficient Hydrogen Evolution in Alkaline Solutions

Author:

Cao Maoqi,Li Xiaofeng,Xiang Dingding,Wu Dawang,Sun Sailan,Dai Hongjing,Luo Jun,Zou Hongtao

Abstract

Electrochemical hydrogen evolution reactions (HER) have drawn tremendous interest for the scalable and sustainable conversion of renewable electricity to clear hydrogen fuel. However, the sluggish kinetics of the water dissociation step severely restricts the high production of hydrogen in alkaline media. Tuning the electronic structure by doping is an effective method to boost water dissociation in alkaline solutions. In this study, N-doped CoO nanowire arrays (N-CoO) were designed and prepared using a simple method. X-ray diffraction (XRD), element mappings and X-ray photoelectron spectroscopy (XPS) demonstrated that N was successfully incorporated into the lattice of CoO. The XPS of Co 2p and O 1s suggested that the electronic structure of CoO was obviously modulated after the incorporation of N, which improved the adsorption and activation of water molecules. The energy barriers obtained from the Arrhenius relationship of the current density at different temperatures indicated that the N-CoO nanowire arrays accelerated the water dissociation in the HER process. As a result, the N-CoO nanowire arrays showed an excellent performance of HER in alkaline condition. At a current density of 10 mA cm−1, the N-CoO nanowire arrays needed only a 123 mV potential, which was much lower than that of CoO (285 mV). This simple design strategy provides some new inspiration to promote water dissociation for HER in alkaline solutions at the atomic level.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3