Abstract
The goal of this research was to synthesize activated nitrogen-doped nanocarbons with high specific surface area and adjustable pore size distribution using wood charcoal as a raw material. The resulting carbon materials were tested for possible application as oxygen reduction reaction catalysts in alkaline media. Activated carbons were obtained using a thermochemical activation method with NaOH. Nitrogen was introduced into activated carbons using dicyandiamide solution. It was demonstrated that the content of introduced nitrogen depends on oxygen content in the structure of the activated carbon. The oxygen reduction reaction activity of the activated and nitrogen-doped carbon material was comparable with a commercial 20% Pt/C catalyst. Electrocatalytic properties of the synthesized N-doped wood-derived carbon catalysts may be associated with the highly developed surface area, specific ratio of micro- and mesopores, as well as the high percentage of pyridinic nitrogen.
Funder
PostDoc project Nitrogen and phosphorus-containing biomass based activated carbons for fuel cells and super-capacitors
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献