Abstract
Non-Newtonian fluid flow in a single fracture is a 3-D nonlinear phenomenon that is often averaged across the fracture aperture and described as 2-D. To capture the key interactions between fluid rheology and spatial heterogeneity, we adopt a simplified geometric model to describe the aperture variability, consisting of adjacent one-dimensional channels with constant aperture, each drawn from an assigned aperture distribution. The flow rate is then derived under the lubrication approximation for the two limiting cases of an external pressure gradient that is parallel/perpendicular to the channels; these two arrangements provide upper and lower bounds to the fracture conductance. The fluid rheology is described by the Prandtl–Eyring shear-thinning model. Novel closed-form results for the flow rate and hydraulic aperture are derived and discussed; different combinations of the parameters that describe the fluid rheology and the variability of the aperture field are considered. The flow rate values are very sensitive to the applied pressure gradient and to the shape of the distribution; in particular, more skewed distribution entails larger values of a dimensionless flow rate. Results for practical applications are compared with those valid for a power-law fluid and show the effects on the fracture flow rate of a shear stress plateau.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献