Characterization and Beneficiation Options for Tungsten Recovery from Yxsjöberg Historical Ore Tailings

Author:

Mulenshi JaneORCID,Khavari Pourya,Chehreh Chelgani Saeed,Rosenkranz Jan

Abstract

Repositories of historical tungsten mining tailings pose environmental risks, but are also potential resources for valuable metals. They still contain large tonnages of useful minerals and metals, reflecting the inefficient extraction methods and/or low metal prices at the time they were mined. The focus of this study is to evaluate the technical viability of reprocessing the tailings to recover some of the contained valuable minerals and metals, as well as reducing the negative environmental impact associated with the tailings. Geometallurgical studies were conducted on drill core samples taken from the Smaltjärnen tailings repository of the closed Yxsjöberg tungsten mine, Sweden. The collected samples were characterized physically, chemically, and mineralogically. Knelson concentrator dry low- and high-intensity magnetic separation methods were tested as potential beneficiation methods. The tailings are dominated by the −600 to +149 µm particles. The highest concentration of tungsten (W) was 0.22% WO3. Using a Knelson concentrator, scheelite (main W mineral) recovery was enhanced, with 75 wt.% tungsten recovered in the 34 wt.% heavy concentrate. Only 1.0 wt.% sulphur (S) reported to the non-magnetic fraction. Based on the findings, a methodology and a preliminary process flowsheet for reprocessing the tailings is proposed.

Funder

VINNOVA

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference26 articles.

1. https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en

2. British Geological Survey Risk List 2015—An update to the supply risk index for elements or element groups that are of economic value;Br. Geol. Surv.,2015

3. Mapping the global flow of tungsten to identify key material efficiency and supply security opportunities

4. Reprocessing slimes tailings from a tungsten mine

5. Mineralogical characterization of mine waste

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3