Modeling Method to Abstract Collective Behavior of Smart IoT Systems in CPS

Author:

Song JunsupORCID,Karagiannis Dimitris,Lee MoonkunORCID

Abstract

This paper presents a new modeling method to abstract the collective behavior of Smart IoT Systems in CPS, based on process algebra and a lattice structure. In general, process algebra is known to be one of the best formal methods to model IoTs, since each IoT can be represented as a process; a lattice can also be considered one of the best mathematical structures to abstract the collective behavior of IoTs since it has the hierarchical structure to represent multi-dimensional aspects of the interactions of IoTs. The dual approach using two mathematical structures is very challenging since the process algebra have to provide an expressive power to describe the smart behavior of IoTs, and the lattice has to provide an operational capability to handle the state-explosion problem generated from the interactions of IoTs. For these purposes, this paper presents a process algebra, called dTP-Calculus, which represents the smart behavior of IoTs with non-deterministic choice operation based on probability, and a lattice, called n:2-Lattice, which has special join and meet operations to handle the state explosion problem. The main advantage of the method is that the lattice can represent all the possible behavior of the IoT systems, and the patterns of behavior can be elaborated by finding the traces of the behavior in the lattice. Another main advantage is that the new notion of equivalences can be defined within n:2-Lattice, which can be used to solve the classical problem of exponential and non-deterministic complexity in the equivalences of Norm Chomsky and Robin Milner by abstracting them into polynomial and static complexity in the lattice. In order to prove the concept of the method, two tools are developed based on the ADOxx Meta-Modeling Platform: SAVE for the dTP-Calculus and PRISM for the n:2-Lattice. The method and tools can be considered one of the most challenging research topics in the area of modeling to represent the collective behavior of Smart IoT Systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3