Image Quality Assessment for Gibbs Ringing Reduction

Author:

Wang Yue1ORCID,Healy John J.1ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, University College Dublin, D04 V1W8 Dublin, Ireland

Abstract

Gibbs ringing is an artefact that is inevitable in any imaging modality where the measurement is Fourier band-limited. It impacts the quality of the image by creating a ringing appearance around discontinuities. Many novel ways of suppressing the artefact have been proposed, including machine learning methods, but the quantitative comparisons of the results have frequently been lacking in rigour. In this paper, we examine image quality assessment metrics on three test images with different complexity. We determine six metrics which show promise for simultaneously assessing severity of Gibbs ringing and of other error such as blurring. We examined applying metrics to a region of interest around discontinuities in the image and use the metrics on the resulting region of interest. We demonstrate that the region of interest approach does not improve the performance of the metrics. Finally, we examine the effect of the error threshold parameter in two metrics. Our results will aid development of best practice in comparison of algorithms for the suppression of Gibbs ringing.

Funder

Irish Research Council Government of Ireland Postgraduate Scholarship

GliMR EU COST Action

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reading between the lines: interpolation as it impacts ringing suppression;Holography, Diffractive Optics, and Applications XIII;2023-11-27

2. Reducing ringing artefact in fresnel digital holography using compressed sensing;International Conference on Images, Signals, and Computing (ICISC 2023);2023-08-21

3. Compressive digital holography and Gibbs ringing;Holography: Advances and Modern Trends VIII;2023-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3