Phytoplankton Blooms Expanding Further Than Previously Thought in the Ross Sea: A Remote Sensing Perspective

Author:

Chen Shuangling,Meng Yu

Abstract

Accurate and robust measurements from ocean color satellites are critical to studying spatial and temporal changes of surface ocean properties. Satellite-derived Chlorophyll-a (Chl) is an important parameter to monitor phytoplankton blooms on synoptical scales, particularly in remote seas. However, the present NASA standard Chl algorithm tends to strongly underestimate the Chl in the Ross Sea. Based on a locally-tuned Chl algorithm in the Ross Sea and using the data record from MODIS between 2002 and 2020, here we investigated the spatial expansion of phytoplankton blooms in the Ross Sea. Our results show the geometric areas of the phytoplankton blooms could reach (7.20 ± 2.8) × 104 km2 on average, which was ~3.1 times that of those identified using the NASA default Chl algorithm. Spatially, blooms were frequently identified on the shelf of the Ross Sea polynya with a typical chance of ≥80%. In the context of climate change and global warming, the general decrease and interannual dynamics of sea ice cover tends to affect solar light penetration and surface seawater temperature, which were found to regulate the spatial expansion of the phytoplankton blooms over the years. Statistical analyses showed that the spatial coverages of the phytoplankton blooms were significantly correlated with sea surface temperature (Spearman correlation coefficient R = 0.55, at p < 0.05), sea surface wind speed (R = 0.42, at p < 0.05), and sea ice concentration (R = −0.84, at p < 0.05), yet without significant long-term (>10 years) trends over the study period. The stronger phytoplankton blooms than those previously observed may indicate larger carbon sequestration, which needs to be investigated in the future. More valid satellite observations under cloud covers will further constrain the estimates.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Qianjiang Talent Program of Zhejiang Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3