Deep-Learning-Based Multiple Model Tracking Method for Targets with Complex Maneuvering Motion

Author:

Tian Weiming,Fang Linlin,Li Weidong,Ni Na,Wang Rui,Hu ChengORCID,Liu Hanzhe,Luo Weigang

Abstract

The effective detection of unmanned aerial vehicle (UAV) targets is of great significance to guarantee national military security and social stability. In recent years, with the development of communication and control technology, the movement of UAVs has become increasingly flexible and complex, presenting diverse trajectory forms and different motion models in different phases. The Gaussian mixture probability hypothesis density filter incorporating the linear Gaussian jump Markov system approach (LGJMS-GMPHD) provides an efficient method for tracking multiple maneuvering targets, as applied to the switching of motions between a set of models in a Markovian chain. However, in practice, the motion model parameters of targets are generally unknown and the model switching is uncertain. When the preset filtering model parameters are mismatched, the tracking performance is dramatically degraded. In this paper, within the framework of the LGJMS-GMPHD filter, a deep-learning-based multiple model tracking method is proposed. First, an adaptive turn rate estimation network is designed to solve the filtering model mismatch caused by unknown turn rate parameters in coordinate turn models. Second, a filter state modification network is designed to solve the large tracking errors in the maneuvering phase caused by uncertain motion model switching. Finally, based on simulations of multiple maneuvering targets in cluttered environments and experimental field data verification, it can be concluded that the proposed method has strong adaptability to multiple maneuvering forms and can effectively improve the tracking performance of targets with complex maneuvering motion.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3