A Recurrent Adaptive Network: Balanced Learning for Road Crack Segmentation with High-Resolution Images

Author:

Zhang Yi,Fan JunfuORCID,Zhang Mengzhen,Shi Zongwen,Liu Rufei,Guo Bing

Abstract

Road crack segmentation based on high-resolution images is an important task in road service maintenance. The undamaged road surface area is much larger than the damaged area on a highway. This imbalanced situation yields poor road crack segmentation performance for convolutional neural networks. In this paper, we first evaluate the mainstream convolutional neural network structure in the road crack segmentation task. Second, inspired by the second law of thermodynamics, an improved method called a recurrent adaptive network for a pixelwise road crack segmentation task is proposed to solve the extreme imbalance between positive and negative samples. We achieved a flow between precision and recall, similar to the conduction of temperature repetition. During the training process, the recurrent adaptive network (1) dynamically evaluates the degree of imbalance, (2) determines the positive and negative sampling rates, and (3) adjusts the loss weights of positive and negative features. By following these steps, we established a channel between precision and recall and kept them balanced as they flow to each other. A dataset of high-resolution road crack images with annotations (named HRRC) was built from a real road inspection scene. The images in HRRC were collected on a mobile vehicle measurement platform by high-resolution industrial cameras and were carefully labeled at the pixel level. Therefore, this dataset has sufficient data complexity to objectively evaluate the real performance of convolutional neural networks in highway patrol scenes. Our main contribution is a new method of solving the data imbalance problem, and the method of guiding model training by analyzing precision and recall is experimentally demonstrated to be effective. The recurrent adaptive network achieves state-of-the-art performance on this dataset.

Funder

National Natural Science Foundation of China

State Key Laboratory of Resources and Environmental Information System

Shandong Provincial Natural Science Foundation

National Key Research and Development Program of China

Young Teacher Development Support Program of Shandong University of Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3