Object-Oriented Change Detection Method Based on Spectral–Spatial–Saliency Change Information and Fuzzy Integral Decision Fusion for HR Remote Sensing Images

Author:

Ge Chuting,Ding Haiyong,Molina InigoORCID,He Yongjian,Peng Daifeng

Abstract

Spectral features in remote sensing images are extensively utilized to detect land cover changes. However, detection noise appearing in the changing maps due to the abundant spatial details in the high-resolution images makes it difficult to acquire an accurate interpretation result. In this paper, an object-oriented change detection approach is proposed which integrates spectral–spatial–saliency change information and fuzzy integral decision fusion for high-resolution remote sensing images with the purpose of eliminating the impact of detection noise. First, to reduce the influence of feature uncertainty, spectral feature change is generated by three independent methods, and spatial change information is obtained by spatial feature set construction and the optimal feature selection strategy. Secondly, the saliency change map of bi-temporal images is obtained with the co-saliency detection method to complement the insufficiency of image features. Then, the image objects are acquired by multi-scale segmentation based on the staking images. Finally, different pixel-level image change information and the segmentation result are fused using the fuzzy integral decision theory to determine the object change probability. Three high-resolution remote sensing image datasets and three comparative experiments were carried out to evaluate the performance of the proposed algorithm. Spectral–spatial–saliency change information was found to play a major role in the change detection of high-resolution remote sensing images, and the fuzzy integral decision strategy was found to effectively obtain reliable changed objects to improve the accuracy and robustness of change detection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3