The Effect of Oxygen Vacancies on the Diffusion Characteristics of Zn(II) Ions in the Perovskite SrTiO3 Layer: A Computational Study

Author:

Ahn Yong Nam1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Gyeonggi, Republic of Korea

Abstract

A highly polar perovskite SrTiO3 (STO) layer is considered as one of the promising artificial protective layers for the Zn metal anode of aqueous zinc-ion batteries (AZIBs). Although it has been reported that oxygen vacancies tend to promote Zn(II) ion migration in the STO layer and thereby effectively suppress Zn dendrite growth, there is still a lack of a basic understanding of the quantitative effects of oxygen vacancies on the diffusion characteristics of Zn(II) ions. In this regard, we comprehensively studied the structural features of charge imbalances caused by oxygen vacancies and how these charge imbalances affect the diffusion dynamics of Zn(II) ions by utilizing density functional theory and molecular dynamics simulations. It was found that the charge imbalances are typically localized close to vacancy sites and those Ti atoms that are closest to them, whereas differential charge densities close to Sr atoms are essentially non-existent. We also demonstrated that there is virtually no difference in structural stability between the different locations of oxygen vacancies by analyzing the electronic total energies of STO crystals with the different vacancy locations. As a result, although the structural aspects of charge distribution strongly rely on the relative vacancy locations within the STO crystal, Zn(II) diffusion characteristics stay almost consistent with changing vacancy locations. No preference for vacancy locations causes isotropic Zn(II) ion transport inside the STO layer, which subsequently inhibits the formation of Zn dendrites. Due to the promoted dynamics of Zn(II) ions induced by charge imbalance near the oxygen vacancies, the Zn(II) ion diffusivity in the STO layer monotonously increases with the increasing vacancy concentration ranging from 0% to 16%. However, the growth rate of Zn(II) ion diffusivity tends to slow down at relatively high vacancy concentrations as the imbalance points become saturated across the entire STO domain. The atomic-level understanding of the characteristics of Zn(II) ion diffusion demonstrated in this study is expected to contribute to developing new long-life anode systems for AZIBs.

Funder

Gachon University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3