Low Temperature Thermal Treatment of Incineration Fly Ash under Different Atmospheres and Its Recovery as Cement Admixture

Author:

He Tingshu1,Li Jiangbo1,Ma Xiaodong1ORCID,Da Yongqi1,Yuan Hudie1

Affiliation:

1. College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Municipal solid waste incineration fly ash is classified as hazardous waste because it contains dioxins and a variety of heavy metals. It is not allowed to be directly landfilled without curing pretreatment, but the increasing production of fly ash and scarce land resources has triggered consideration of the rational disposal of fly ash. In this study, solidification treatment and resource utilization were combined, and the detoxified fly ash was used as cement admixture. The effects of thermal treatment in different atmospheres on the physical and chemical properties of fly ash and the effects of fly ash as admixture on cement properties were investigated. The results indicated that the mass of fly ash increased due to the capture of CO2 after thermal treatment in CO2 atmosphere. When the temperature was 500 °C, the weight gain reached the maximum. After thermal treatment (500 °C + 1 h) in air, CO2, and N2 atmospheres, the toxic equivalent quantities of dioxins in fly ash decreased to 17.12 ng TEQ/kg, 0.25 ng TEQ/kg, and 0.14 ng TEQ/kg, and the degradation rates were 69.95%, 99.56%, and 99.75%, respectively. The direct use of fly ash as admixture would increase the water consumption of standard consistency of cement and reduce the fluidity and 28 d strength of mortar. Thermal treatment in three atmospheres could inhibit the negative effect of fly ash, and the inhibition effect of thermal treatment in CO2 atmosphere was the best. The fly ash after thermal treatment in CO2 atmosphere had the possibility of being used as admixture for resource utilization. Because the dioxins in the fly ash were effectively degraded, the prepared cement did not have the risk of heavy metal leaching, and the performance of the cement also met the requirements.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3