Application of Cold Sintering Process for Stabilizing Heavy Metals in Municipal Solid Waste Incineration Fly Ash

Author:

Liao Shih-Kai1,Wu Zhong-En1,Shen Yun-Hwei1ORCID

Affiliation:

1. Department of Resources Engineering, National Cheng Kung University, Tainan 70101, Taiwan

Abstract

Municipal solid waste incineration fly ash (MSWI FA) consists predominantly of compounds comprising elements such as calcium, aluminum, silicon, sodium, and others. Additionally, it encompasses a complex mixture of heavy metals, chlorides, sulfates, organic pollutants, and other constituents. The effective and economically viable treatment of MSWI FA poses a formidable challenge for resource cycling at the current stage. In this research report, we adopt a novel low-temperature sintering method called the “Cold Sintering Process” (CSP) as a means to immobilize heavy metals within the fly ash. By utilizing a Taguchi orthogonal array method, we will adjust five control factors in the CSP, including sintering temperature, uniaxial pressure, sintering time, initial water addition, and sodium carbonate dosage. The leaching of cadmium from the fly ash, as measured by the Toxicity Characteristic Leaching Procedure (TCLP), will serve as the quality indicator of products. Through the application of CSP, MSWI FA was transformed into structurally stable ceramic blocks, and the heavy metals within the blocks were effectively immobilized. The results of the experiments showed that MSWI FA under the conditions of a temperature of 300 °C, uniaxial pressure of 312 MPa, sintering time in 60 min, 25 wt% water addition, and 9 wt% Na2CO3 addition could effectively reduce the leaching of cadmium by 77.71%, lead by 21.14%, zinc by 42.37%, and chromium by 99.99%, as compared to the original MSWI FA TCLP results. The X-ray Diffraction (XRD) results indicate that during the CSP, fly ash forms phases such as calcium silicate, rankinite, hydrogrossular, anorthite, and marilite. These phase transformations are considered beneficial for preventing the leaching of internal heavy metals. Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) results reveal that CSP is advantageous for compacting the overall structure, and EDS results further demonstrate that some of the Pb and Zn are carried out from the interior of the blocks, with uneven distribution on the surface of fly ash particles. The aforementioned experimental results serve as preliminary indications of CSP’s capability to stabilize detrimental components within high-purity fly ash. Future research endeavors may entail the refinement of material proportions, modification of experimental parameters, and other methodologies, thus facilitating potential scalability to industrial applications. Such developments align with the overarching goal of resource utilization.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3