Performance Evaluation of Asphalt Concrete Incorporating Steel Slag Powder as Filler under the Combined Damage of Temperature and Moisture

Author:

Liu Shiquan1,Zhang Zhipeng1,Wang Ruiyang2

Affiliation:

1. Inner Mongolia Communications Design and Research Institute Co., Ltd., Hohhot 010000, China

2. School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China

Abstract

Recycling steel slag into asphalt concrete is an important way to save natural resources and protect the environment. The high asphalt absorption and adsorption and the sensitivity of steel slag aggregate (SSA) to the combined damage of temperature and moisture (volume expansion and poor durability under freeze-thaw cycle damage) still pose risks for the use of SSA in asphalt concrete. It is urgent to develop new utilization methods of steel slag. With this in mind, the material properties of steel slag powder (SSP) and performance characteristics of asphalt concrete incorporating SSP filler were evaluated in this research. The SSP was prepared in the laboratory by grinding steel slag with a particle size of 2.36–4.75 mm. Firstly, the material properties of SSP including the specific surface area, particle gradation, apparent density, chemical compositions, and thermal stability were analyzed. Steel slag (2.36–4.75 mm) and common limestone powder (LP) filler were used as control groups. The grindability of steel slag and the advantages of using SSP as a filler in asphalt concrete were preliminarily analyzed based on the test results of material properties. Then, the Superpave method was used to design asphalt concrete incorporating SSP and LP. Considering that steel slag is sensitive to the combined damage of temperature and moisture, the main engineering performance of asphalt concrete after the combined damage of temperature and moisture was evaluated to further reveal the feasibility of using SSP as a filler. Two combined damage modes, namely hot water damage and freeze-thaw cycle damage, were applied. Results suggest that although the steel slag is more difficult to grind compared to limestone particles, grinding steel slag into SSP has improved the uniformity of its material properties. Good uniformity of material properties, high alkalinity, and excellent thermal stability of SSP give it some advantages in its application in asphalt concrete. Although the freeze-thaw cycle damage has a slightly more significant effect on the engineering performance of asphalt concrete than hot water damage, compared to the asphalt concrete with LP filler, even after freeze-thaw cycle damage for three cycles asphalt concrete incorporating SSP still possesses comparable or better volume stability, mechanical performance, high-temperature deformation resistance, low-temperature crack resistance, fatigue crack resistance, and fatigue durability.

Funder

Science and Technology Project from the Transportation Department of Inner Mongolia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3