Estimating Groundwater Flow Velocity in Shallow Volcanic Aquifers of the Ethiopian Highlands Using a Geospatial Technique

Author:

Shube Hassen12ORCID,Kebede Seifu3,Azagegn Tilahun1,Nedaw Dessie1ORCID,Haji Muhammed2,Karuppannan Shankar2ORCID

Affiliation:

1. School of Earth Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia

2. Department of Applied Geology, School of Applied Nartural Sciences, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia

3. School of Agricultural, Earth and Environmental Sciences, Center for Water Resources Research, University of KwaZulu Natal, Pietermaritzburg 3209, South Africa

Abstract

The shallow volcanic aquifer is the major rural water supply source in the Ethiopian highlands. A significant number of hand pump wells in these aquifers experience a rapid decline in yield and poor performance within a short period of time after construction. Hence, reliable estimation of groundwater flow velocity is important to understand groundwater flow dynamics, aquifer responses to stresses and to optimize the sustainable management of groundwater resources. Here, we propose the geospatial technique using four essential input raster maps (groundwater elevation head, transmissivity, effective porosity and saturated thickness) to investigate groundwater flow velocity magnitude and direction in the shallow volcanic aquifers of the Ethiopian highlands. The results indicated that the high groundwater flow velocity in the Mecha site, ranging up to 47 m/day, was observed in the fractured scoraceous basalts. The Ejere site showed groundwater flow velocity not exceeding 7 m/day in the fractured basaltic aquifer and alluvial deposits. In the Sodo site, the groundwater flow velocity was observed to exceed 22 m/day in the fractured basaltic and rhyolitic aquifers affected by geological structures. The Abeshege site has a higher groundwater flow velocity of up to 195 m/day in the highly weathered and fractured basaltic aquifer. In all study sites, aquifers with less fractured basalt, trachyte, rhyolite, welded pyroclastic, and lacustrine deposits exhibited lower groundwater flow velocity values. The groundwater flow velocity directions in all study sites are similar to the groundwater elevation head, which signifies the local and regional groundwater flow directions. This work can be helpful in shallow groundwater resource development and management for rural water supply.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3