Performance of Alkali-Activated Slag Concrete Masonry Blocks Subjected to Accelerated Carbonation Curing

Author:

Hwalla Joud1ORCID,Al-Mazrouei Mahra1,Al-Karbi Khalood1,Al-Hebsi Afraa1,Al-Ameri Mariam1,Al-Hadrami Fatima1,El-Hassan Hilal1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, Al Ain Campus, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

Abstract

This study investigates the effect of accelerated carbonation curing on the carbon sequestration potential, performance, and microstructure of alkali-activated slag mixes representing concrete masonry blocks (CMBs). The carbonation curing process parameters varied, including initial curing duration, carbonation curing duration, and carbonation pressure. Research findings showed that a maximum CO2 uptake of 12.8%, by binder mass, was attained upon exposing concrete to 4 h initial curing and 20 h carbonation curing at a pressure of 5 bars. The compressive strength and water absorption capacity improved with longer initial and carbonation curing durations and higher pressure. Upon subjecting to salt attack, the mass and strength of 28-day concrete samples increased, owing to the formation of Friedel’s salt and Halite. All mixes could be used as non-load-bearing CMB, with a 1-day strength greater than 4.1 MPa. Based on the global warming potential index, the carbon footprint of carbonation-cured, alkali-activated slag concrete masonry units was up to 46% lower than non-carbonation-cured counterparts. Research findings offer valuable information on the production of carbonation-cured, cement-free concrete masonry blocks to replenish natural resources, recycle industrial waste, and mitigate CO2 emissions.

Funder

United Arab Emirates University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3