Impacts of Polylactic Acid Microplastics on Performance and Microbial Dynamics in Activated Sludge System

Author:

Huang Mengbo123ORCID,Wang Dongqi123ORCID,Zhang Shengwei3,Weng Yuzhu34,Li Kailong3,Huang Renjie3,Guo Yuan3,Jiang Chunbo23,Wang Zhe23,Wang Hui3ORCID,Meng Haiyu3,Lin Yishan5,Fang Mingliang6,Li Jiake123

Affiliation:

1. National Demonstration Center for Experimental Water Resources and Hydro-Electric Engineering Education, Xi’an University of Technology, Xi’an 710048, China

2. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

3. Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China

4. College of Environment, Hohai University, Nanjing 210098, China

5. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China

6. Department of Environmental Science and Engineering, Fudan University, 220 Handan Rd., Shanghai 200433, China

Abstract

A large number of microplastics (MPs) have been found in various stages of wastewater treatment plants, which may affect the functional microbial activity in activated sludge and lead to unstable pollutant removal performance. In this study, the effects of different concentrations of polylactic acid microplastics (PLA MPs) on system performance, nitrification and phosphorus (P) removal activities, and extracellular polymeric substances (EPS) were evaluated. The results showed that under the same influent conditions, low concentrations (50 particles/(g TS)) of PLA MPs had no significant effect on effluent quality. The average removal efficiencies of chemical oxygen demand, phosphate, and ammonia were all above 80%, and the average removal efficiencies of total nitrogen remained above 70%. High concentrations (200 particles/(g TS)) of PLA MPs inhibited the activities of polyphosphate-accumulating organisms (PAOs) and nitrifying bacteria. The specific anaerobic P release rate decreased from 37.7 to 23.1 mg P/(g VSS·h), and the specific aerobic P uptake rate also significantly decreased. The specific ammonia oxidation rate decreased from 0.67 to 0.34 mg N/(g VSS·h), while the change in the specific nitrite oxidation rate was not significant. The dosing of PLA MPs decreased the total EPS and humic acid content. As the concentration of PLA MPs increased, microbial community diversity increased. The relative abundance of potential PAOs (i.e., Acinetobacter) increased from 0.08 to 12.57%, while the relative abundance of glycogen-accumulating organisms (i.e., Competibacter and Defluviicoccus) showed no significant changes, which would lead to improved P removal performance. The relative abundance of denitrifying bacteria (i.e., Pseudomonas) decreased from 95.43 to 58.98%, potentially contributing to the decline in denitrification performance.

Funder

National Natural Science Foundation of China

Open Research Project of State Key Laboratory of Eco-Hydraulics in Arid Northwest China

Scientific Research Project for Returned Overseas Scholars in Shaanxi Province of China

“Scientists+Engineers” Team Construction Based on QinChuangYuan Platform, Shaanxi Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3