Affiliation:
1. Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
Abstract
Traditional product design evaluation processes are resource-intensive and time-consuming, resulting in unsustainably higher costs and longer lead times. Therefore, sustainable product design evaluation has become an increasingly crucial aspect of product design, focusing on creating a high-efficiency, high-reliability, and low-carbon-emission approach. In this study, we proposed an integrated approach that combines manual design evaluation based on the analytic hierarchy process (AHP) with an automatic design evaluation based on a ResNet-50 network in order to develop a sustainable design evaluation method. First, the evaluation level and indicators for the shape design of a tail-light were defined using the AHP. We followed this by establishing a determination matrix and weight coefficients for the design indicators to create a manual design evaluation model. Second, tail-light shape image datasets were manually annotated based on the evaluation indicators, and design datasets were constructed. The ResNet-50 algorithm was introduced to train the datasets, and the automatic evaluation model for product design was constructed through training and tuning. Finally, we validated the feasibility and effectiveness of the product design evaluation method, which was based on AHP and ResNet-50, by comparing the results obtained using both manual design and automatic design evaluations. The results showed that the proposed sustainable product design evaluation model provides an efficient and reliable method for evaluating product design, improves the decision-making process, and empowers the design and development process. The model enhances resource efficiency and economic sustainability.
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation of China
Zhejiang Provincial Public Welfare Technology Application Research Project
Science and Technology Plan Project of Quzhou
startup project of doctor scientific research of Quzhou University
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献