Effects of Chlortetracycline on the Growth of Eggplant and Associated Rhizosphere Bacterial Communities

Author:

Li Lingling1ORCID,Xue Yuanyuan1,Wang Hengsheng1,Chen Yansong1

Affiliation:

1. School of Biology and Food Engineering, Hefei Normal University, Hefei 230601, China

Abstract

The widespread use of tetracycline antibiotics in the poultry and cattle sectors endangers both human health and the terrestrial ecosystem. Chlortetracyclines (CTCs), in particular, have been proven to affect soil microorganisms in addition to plants in the terrestrial ecosystem. In order to assess the effects of CTC on soil properties, eggplant growth, and soil microorganisms, a potted experiment was carried out in this study. CTC significantly reduced the levels of ammonium nitrogen (NH4+–N) and nitrite nitrogen (NO2−–N) in soil. Meanwhile, the eggplant’s growth was clearly hampered. CTC dramatically and dose-dependently lowered the fluorescence parameters except the quantum yield of non-regulated energy dissipation (ΦNO). Rhodoplanes and Cupriavidus, which were involved in N cycle, were enriched by 10 mg/kg CTC, according to results about different microorganisms at the genus level. Flavisolibacter was reduced by 10 and 50 mg/kg CTC, while Methylosinus and Actinocorallia were enriched by 250 mg/kg CTC. Redundancy analysis highlighted the profound impact of CTC on the soil microbial community, where strong correlations were observed with soil potential of hydrogen (pH), nitrate nitrogen (NO3−–N), and NO2−–N. These findings demonstrated the interdependence between the microbial community and soil characteristics, with CTC primarily affecting the microbes responsible for nitrogen cycling. Consequently, chlortetracycline poses potential hazards to both eggplant plants and the soil microbes in eggplant cultivation soil.

Funder

Anhui University Outstanding Top-of-the-line Talent Cultivation Project

Natural Science Foundation of Anhui Province, China

Hefei Normal University High-level Talents Research Start-up Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3