Analysis of Storage Capacity Change and Dam Failure Risk for Tailings Ponds Using WebGIS-Based UAV 3D Image

Author:

Zhi Meihong1,Zhu Yun1,Jang Ji-Cheng1,Wang Shuxiao2,Chiang Pen-Chi34,Su Chuang5,Liang Shenglun6,Li Ying7,Yuan Yingzhi1

Affiliation:

1. College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China

2. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

3. Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan

4. Carbon Cycle Research Center, National Taiwan University, Taipei 10672, Taiwan

5. Solid Waste and Chemicals Environmental Center of Guangdong Province, Guangzhou 510308, China

6. Cloud Information and Environmental Science Technology Company Limited, Foshan 528300, China

7. Center for Satellite Application on Ecology and Environment, Ministry of Ecology and Environment, Beijing 100094, China

Abstract

Tailings ponds, essential components of mining operations worldwide, present considerable potential hazards downstream in the event of tailings dam failures. In recent years, instances of tailings dam failures, carrying potential environmental safety hazards, have occasionally occurred on a global scale due to the limited technical approaches available for safety supervision of tailings ponds. In this study, an innovative WebGIS-based unmanned aerial vehicle oblique photography (UAVOP) method was developed to analyze the storage capacity change and dam failure risk of tailings ponds. Its applicability was then validated by deploying it at a tailings pond in Yunfu City, Guangdong Province, China. The results showed that the outcomes of two phases of real-scene 3D images met the specified accuracy requirements with an RSME of 0.147–0.188 m in the plane and 0.198–0.201 m along the elevation. The storage capacities of phase I and phase II tailings ponds were measured at 204,798.63 m3 and 148,291.27 m3, respectively, with a storage capacity change of 56,031.51 m3. Moreover, the minimum flood control dam widths, minimum free heights, and dam slope ratios of the tailings pond were determined to comply with the flood control requirements, indicating a low risk of dam failure of the tailings pond. This pilot case study demonstrated the performance of the UAVOP in evaluating storage capacity change and dam failure risk for tailings ponds. It not only enhanced the efficiency of dynamic safety supervision of tailings ponds but also offered valuable references for globally analogous research endeavors.

Funder

High-end Foreign Experts Recruitment Plan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3