Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking

Author:

Xie Yichao12,Zhou Bowen12ORCID,Wang Zhenyu3,Yang Bo12,Ning Liaoyi4,Zhang Yanhui5

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

2. Key Laboratory of Integrated Energy Optimization and Secure Operation of Liaoning Province, Northeastern University, Shenyang 110819, China

3. State Grid Electric Power Research Institute Wuhan Efficiency Evaluation Company Limited, Wuhan 430072, China

4. State Grid Liaoning Electric Power Supply Co., Ltd., Panjin Electric Power Supply Company, Panjin 124010, China

5. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

Achieving carbon neutrality is widely regarded as a key measure to mitigate climate change. The industrial carbon footprint (ICF) calculation, as a foundation to achieve carbon neutrality, primarily relies on roughly estimating direct carbon emissions based on information disclosed by industries. However, these estimates may not be comprehensive, timely, and accurate. This paper elaborates on the issue of ICF calculation, dividing a factory’s carbon emissions into carbon emissions directly produced by appliances and electricity consumption carbon emissions, to estimate the total carbon emissions of the factory. An appliance identification method is proposed based on a cyclic stacking method improved by Bayesian cross-validation, and an appliance state correction module SHMM (state-corrected hidden Markov model) is added to identify the state of the appliance and then to calculate the corresponding appliance carbon emissions. Electricity consumption carbon emissions come from the factory’s electricity consumption and the marginal carbon emission factor of the connected bus. Regarding the selection of artificial intelligence models and cross-validation technique required in the appliance identification method, this paper compares the effects of 7 cross-validation techniques, including stratified K-fold, K-fold, Monte Carlo, etc., on 14 machine learning algorithms such as AdaBoost, XGBoost, feed-forward network, etc., to determine the technique and algorithms required for the final appliance identification method. Experiment results show that the proposed appliance identification method estimates device carbon emissions with an error of less than 3%, which is significantly superior to other models, demonstrating that the proposed approach can achieve comprehensive and accurate ICF calculation.

Funder

National Natural Science Foundation of China

Science and Technology Projects in Liaoning Province

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3