Experimental Investigations of the Thermal Safety of Methyl Ethyl Ketone Oxime Hydrochloride Based on the Flask Method, Thermal Analysis, and GC-MS
-
Published:2023-10-09
Issue:19
Volume:15
Page:14598
-
ISSN:2071-1050
-
Container-title:Sustainability
-
language:en
-
Short-container-title:Sustainability
Author:
Zhou Dehong1,
Peng Shiyu1ORCID,
Xie Bin1,
Wang Lunping1,
Li Haochen1
Affiliation:
1. School of Resource & Safety Engineering, Wuhan Institute of Technology, Wuhan 430074, China
Abstract
Chemical safety accidents caused by the thermal runaway of materials occur frequently around the world, seriously hindering the sustainable development of the chemical industry. Therefore, studies related to the thermal safety of materials are very important for chemical production. In order to ensure the safety of methyl tris (methyl ethyl ketone oxime) silane (MOS), the thermal safety of its accident-prone by-product, methyl ethyl ketone oxime hydrochloride (MEKOH), was analyzed in the study. Temperature changes of MEKOH dissolved in 5%, 10% and 15% deionized water were measured with the flask method. Thermogravimetric (TG) analysis and differential scanning calorimetry (DSC) were applied to comprehensively analyze the thermal stability of MEKOH in different reaction states. The thermal decomposition products of MEKOH were detected with gas chromatography-mass spectrometry (GC-MS). The results show that the temperature of MEKOH dissolved in deionized water at room temperature (28 °C) increases by about 5 °C, and finally stabilizes at 33 °C. MEKOH has good thermal safety during this process. When the temperature rises to 50 °C, MEKOH starts to decompose violently, and no longer exhibits significant weight loss at 145 °C. From 50 °C to 100 °C, MEKOH releases heat, ranging from 29.65 to 45.86 J/g, during thermal decomposition, generating a large amount of flammable substances. The thermal decomposition products were detected, including pyrrolidine, heptane, MEKO, and other substances, but no MEKOH was detected. Overall, the study provides a theoretical basis for preventing the thermal runaway of MEKOH.
Funder
China Petroleum and Chemical Industry Federation (CPCIF) 2022 Responsible Care Special Research Priority Topics
Hubei Emergency Management Department 2021 Special Funds for Production Safety Project
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference67 articles.
1. A study on the focus and key points of chemical safety management;Zhang;China Pet. Chem. Stand. Qual.,2022
2. Network Analysis on Key Causes of Chemical Accidents Considering Structural Characteristics;Liu;J. Saf. Sci. Technol.,2021
3. Investigation and Countermeasures of Common Fire Accidents in Coal Chemical Enterprises;Xu;Mod. Chem. Res.,2023
4. Research on Quantitative Analysis Method for Causal Factors of Chemical Accidents Based on AcciMap Model;Sun;J. Saf. Environ.,2021
5. Cause Analysis of Chemical Accidents based on Improved Cusp Catastrophe Model;Pei;China Saf. Sci. J.,2019