Hydrological Properties of Rill Erosion on a Soil from a Drought-Prone Area during Successive Rainfalls as a Result of Microorganism Inoculation

Author:

Ashgevar Heydari Masumeh1,Sadeghi Seyed Hamidreza12ORCID,Jafarpoor Atefeh1

Affiliation:

1. Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor 46417-76489, Iran

2. Agrohydrology Research Group, Tarbiat Modares University, Tehran 14115-336, Iran

Abstract

Soil and water loss is one of the most severe kinds of land degradation, particularly in drought-vulnerable regions. It diminishes fertility and increases natural catastrophes, such as floods, landslides, sedimentation, drought, and economic, social, and political issues. The current study explores the efficacy of individual and combination cyanobacteria and bacteria inoculation on runoff production from plots generated by rill erosion on soil from the Marzanabad drought-prone region, northern Iran, and exposed to five successive rainfalls with three days intervals. Experiments were conducted on mid-sized plots with dimensions of 6 × 1 m, three replications, and a 30% slope during simulated rains at the lab with an intensity of 50 mm h−1 and a duration of 30 min. Also, excess runoff of about 2.180 L min−1 was introduced to the plots to promote rill formation. Because none of the treated plots created runoff during the design rainfall, the expected circumstances were subject to continuous rainfall until runoff was generated. Compared to the control plots, statistical analysis indicated that the study treatments had a significant (p < 0.01) lower influence on hydrological components during the initial rainfall event. The highest performance was obtained in the combination inoculation of cyanobacteria and bacteria in successive rainfalls (i.e., first to the fourth event), which reduced runoff volume and coefficient by 35.41, 45.34, 26.35, and 36.43%, respectively. During subsequent rainfalls, the bacteria and combination treatment of cyanobacteria and bacteria did not vary substantially (p = 0.94) on the study components. As a result, after consecutive rainfall events, runoff volume dropped by 20.79, 22.15, 12.83, and 15.87%, and the runoff coefficient reduced by 20.80, 22.15, 12.84, and 15.88%. The cyanobacteria treatment diminished the study components only after the initial rainstorm event. The current study’s findings underscored the need to minimize water loss in the early phases of erosion in drought-sensitive regions where soil and water conservation is a vital task.

Funder

Tarbiat Modares University

Iran National Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3