A Study on Modifying Campus Buildings to Improve Habitat Comfort—A Case Study of Tianjin University Campus

Author:

Du Xinge1,Gao Guoyao2,Gao Feng1,Zhou Zhihua3

Affiliation:

1. School of Architecture, Tianjin University, Tianjin 300072, China

2. School of Civil Engineering, Tianjin University, Tianjin 300072, China

3. School of Environment Science and Engineering, Tianjin University, Tianjin 300072, China

Abstract

At present, the design and planning of teaching and living areas on university campuses are relatively straightforward but encounter problems, such as poor ventilation, low indoor air quality, and poor sound insulation. In this study, the teaching building and living area cluster at the Tianjin University campus were selected as the research objects. We verified the effectiveness of the simulation results before and after renovation through onsite testing. To improve ventilation, an atrium and patio were added to the teaching building, and the ventilation of the renovated building was studied. The indoor thermal environment intelligent control system regulates carbon dioxide (CO2) concentration and humidity in the teaching building and changes the thermal comfort of the teaching building. Limiting vehicle speeds near the teaching building and the living area cluster, using muffling materials and muffling equipment, and increasing greenery to reduce noise were factors we studied, considering whether they had a noise-reduction effect. It was found that the average number of air changes in the overall functional space of the first teaching building reaches 6.49 times/h, and the wind speed in the human activity region is below 1 m/s. When using a thermal environment intelligent control system, the indoor temperature throughout the year was within the thermal comfort range 81% of the time. The maximum noise around the teaching building during the daytime was 51.0 dB, the maximum noise at nighttime was 41.5 dB, and the maximum sound level on the facade of the living area cluster was 53 dB. The average noise-reduction rate was 22.63%, which exceeds the noise-reduction rate given in the above research literature.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference48 articles.

1. Improvement Strategies Study for Outdoor Wind Environment in a University in Beijing Based on CFD Simulation;Li;Adv. Civ. Eng.,2020

2. CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus;Blocken;Environ. Model. Softw.,2012

3. Evaluation of urban form influence on pedestrians’ wind comfort;Norouziasas;Build. Environ.,2022

4. ABC of learning and teaching: Educational environment;Hutchinson;BMJ,2003

5. Post-occupancy evaluation: State-of-the-art analysis and state-of-the-practice review;Li;Build. Environ.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3