Affiliation:
1. University of Pau and the Adour Region, E2S UPPA, CNRS, IPREM-UMR 5254, 40004 Mont de Marsan, France
2. Bordeaux Imaging Center/Electronic Imaging, UAR 3420 CNRS US4 INSERM, 33000 Bordeaux, France
3. Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), 28359 Bremen, Germany
Abstract
A comprehensive characterization of the physical and chemical properties of whole duck feathers from French mulard species, including their various categories and fractions (barbs, rachis, and calamus), was conducted to explore potential ways for utilizing this waste product. This analysis aimed to identify opportunities for valorizing these feathers and unlocking their untapped potential. Hence, the duck feathers were thoroughly characterized by a proximate analysis to determine their composition and theoretical heating value. Additionally, feathers underwent other analyses as Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis, solvent behavior and chemical durability assessment, hydrophobicity testing, Fourier Transform Infrared (FT-IR) spectroscopy, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). The analyses revealed duck feather composition, molecular weight, stability in different environments, hydrophobicity, functional groups present, thermal behavior, crystallinity, and structural arrangement. Upon analysis, it was determined that duck feathers contain pure fiber keratin and possess characteristics that make them suitable for the production of high-value keratin-based products, including cosmetics, activated carbon for purification, materials for waterproofing, lightweight construction, and textile innovations, underscoring their potential to support sustainable and eco-friendly initiatives across various sectors.
Funder
“Investissements d’Avenir” French program managed by ANR
New Aquitaine Region
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献