Multi-Period Optimal Power Flow with Photovoltaic Generation Considering Optimized Power Factor Control

Author:

de Souza Cícero Augusto1ORCID,da Silva Diego Jose1ORCID,Rossoni Priscila1ORCID,Belati Edmarcio Antonio1ORCID,Pelizari Ademir1ORCID,López-Lezama Jesús M.2ORCID,Muñoz-Galeano Nicolás2ORCID

Affiliation:

1. Center for Engineering, Modelling and Applied Social Sciences (CECS), Federal University of ABC, Santo André 09210-170, SP, Brazil

2. Research Group in Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia, Calle 67 No. 56-108, Medellin 050010, Colombia

Abstract

This paper presents a Multi-Period Optimal Power Flow (MOPF) modeling applied to the minimization of energy losses in Distribution Networks (DNs) considering the reactive power control of Photovoltaic Generation (PVG) that can be applied to both short-term and long-term operation planning. Depending on the PV Power Factor (PVpf) limitations, PVG may provide both active and reactive power. The optimal power factor control on the buses with PVG contributes to an economical and safe operation, minimizing losses and improving the voltage profile of the DN. The proposed MOPF was modeled in order to minimize active energy losses subject to grid constraints and PVpf limitations. The variations of loads and PVG were discretized hour by hour, composing a time horizon of 24 h for day-ahead planning; nonetheless, the methodology can be applied to any other time period, such as a month, year, etc., by simply having generation and load forecasts. To demonstrate the effectiveness and applicability of the proposed approach, various tests were carried out on 33-bus and 69-bus distribution test systems. The analyses considered the DN operating with PVG in four different cases: (a) PVpf fixed at 1.0; (b) PVpf fixed at 0.9 capacitive; (c) hourly PVpf optimization; and (d) optimization of PVpf for a single value. The results show that a single optimal adjustment of PVpf minimizes losses, improves voltage profile, and promotes safe operation, avoiding multiple PVpf adjustments during the operating time horizon. The algorithm is extremely fast, taking around 2 s to reach a solution.

Funder

Colombia Scientific Program within the framework of the called Ecosistema Científico

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3