Modeling the Dynamic Behavior of Recycled Concrete Aggregate-Virgin Aggregates Blend Using Artificial Neural Network

Author:

Zhi Xiao1,Aminu Umar Faruk2,Hua Wenjun2ORCID,Huang Yi3,Li Tingyu3,Deng Pin1,Chen Yuliang3,Xiao Yuanjie24ORCID,Ali Joseph2

Affiliation:

1. China National Building Material Group Co., Ltd., Beijing 100036, China

2. School of Civil Engineering, Central South University, Changsha 410075, China

3. Hunan Communications Research Institute Co., Ltd., Changsha 410015, China

4. Ministry of Education (MOE) Key Laboratory of Engineering Structures of Heavy Haul Railway (Central South University), Changsha 410075, China

Abstract

Construction and demolition waste (CDW) aggregates have increased as a result of the rise in construction activities. Current research focuses on recycling of CDW to replace dwindling natural aggregates but pays little attention to permanent deformation behavior due to the anisotropic nature of the blended CDW aggregates. Accordingly, this study performs repeated load triaxial tests to evaluate the permanent deformation mechanism of the blended materials under various shear stress ratios and moisture conditions. An artificial neural network (ANN) deformation prediction model that accounts for the complex nature of the blended CDW and natural aggregate was developed. Moreover, a sensitivity analysis was performed to determine the relative importance of each input variable on the deformation. The results indicated that the shear stress ratio and confining pressure profoundly influence the deformation. It was demonstrated that the proposed prediction model is more robust than the conventional one. The sensitivity analysis revealed that the number of loading cycles, confining pressure, and shear stress ratios are the principal factors influencing the permanent deformation of the blended aggregates with sensitivity coefficients of 31%, 25%, and 21%, respectively, followed by the CDW and moisture contents. This model can assist practitioners and policymakers in predicting the permanent deformation of CDW materials for unbound pavement base/subbase construction.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Open-end Foundation of MOE Key Laboratory of High-speed Railway Engineering

Key R&D Program of Chinese Academy of Railway Sciences

Open-end Foundation of MOE Key Laboratory of Engineering Structures of Heavy Haul Railway

High-Performance Computing Center of Central South University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3