Enhanced Method for Emergency Scheduling of Natural Gas Pipeline Networks Based on Heuristic Optimization

Author:

Xiang Qi1ORCID,Yang Zhaoming1ORCID,He Yuxuan1,Fan Lin2,Su Huai1,Zhang Jinjun1

Affiliation:

1. National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China

2. PetroChina Planning & Engineering Institute, Beijing 100083, China

Abstract

Safety and disturbance issues in system engineering have garnered substantial attention. This study focuses on the analysis of the distinct characteristics of emergency dispatch problems in Natural Gas Pipeline Networks (NGPS). Graph theory serves as a tool to transform the NGPS topology and establish an optimization model for NGPS emergency dispatch. The model also integrates user weights, satisfaction, and reduction factors into the user modeling approach. Its objective is to maximize overall system satisfaction while considering factors such as demand-side requirements and operational constraints. To solve this optimization model, the Particle Swarm Optimization (PSO) method is employed. An in-depth exploration of four unique disturbance scenarios provides solid evidence of the effectiveness and practicality of the PSO method. Compared to other methods, the PSO method consistently boosts overall user satisfaction and aligns more fluidly with the real-time demands of emergency scheduling, regardless of reduced supply capacity, complete supply interruptions, sudden surges in user demand, or pipeline connection failures. The developed emergency scheduling optimization method presents two key advantages. Firstly, it proficiently mitigates potential losses stemming from decreased supply capacity at local or regional levels. By adeptly adjusting natural gas supply strategies, it minimizes economic and production losses while ensuring a steady supply to critical users. Secondly, the method is superior at swiftly reducing the affected area and managing the increased demand for natural gas, thus maintaining NGPS stability. This research underscores the importance of considering user characteristics and demands during emergencies and demonstrates the effectiveness of employing the PSO method to navigate emergency scheduling challenges. By strengthening the resilience of the pipeline network and ensuring a sustainable natural gas supply, this study constitutes a significant contribution to energy security, economic development, and the promotion of clean energy utilization, ultimately propelling the achievement of sustainable development goals.

Funder

National Natural Science Foundation of China

China University of Petroleum, Beijing

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3