Author:
Duan Wentao,Huang Shaopeng,Nie Chenwei
Abstract
A Moon-based Earth radiation observatory (MERO) could provide a longer-term continuous measurement of radiation exiting the Earth system compared to current satellite-based observatories. In order to parameterize the detector for such a newly-proposed MERO, the evaluation of the instrument’s entrance pupil irradiance (EPI) is of great importance. The motivation of this work is to build an EPI estimating model for a simplified single-pixel MERO instrument. The rationale of this model is to sum the contributions of every location in the MERO-viewed region on the Earth’s top of atmosphere (TOA) to the MERO sensor’s EPI, taking into account the anisotropy in the longwave radiance at the Earth TOA. Such anisotropy could be characterized by the TOA anisotropic factors, which can be derived from the Clouds and the Earth’s Radiant Energy System (CERES) angular distribution models (ADMs). As an application, we estimated the shortwave (SW) (0.3–5 µm) and longwave (LW) (5–200 µm) EPIs for a hypothetic MERO instrument located at the Apollo 15 landing site. Results show that the SW EPI varied from 0 to 0.065 W/m2, while the LW EPI ranged between 0.061 and 0.075 W/m2 from 1 to 29 October, 2017. We also utilized this model to predict the SW and LW EPIs for any given location within the MERO-deployable region (region of 80.5°W–80.5°E and 81.5°S–81.5°N on the nearside of the Moon) for the future 18.6 years from October 2017 to June 2036. Results suggest that the SW EPI will vary between 0 and 0.118 W/m2, while the LW EPI will range from 0.056 to 0.081 W/m2. Though the EPI estimating model in this study was built for a simplistic single-pixel instrument, it could eventually be extended and improved in order to estimate the EPI for a multi-pixel MERO sensor.
Funder
National Natural Science Foundation of China
China Scholarship Council
Subject
General Earth and Planetary Sciences
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献