Evaluating the Performance of a Random Forest Kernel for Land Cover Classification

Author:

Zafari Azar,Zurita-Milla Raul,Izquierdo-Verdiguier EmmaORCID

Abstract

The production of land cover maps through satellite image classification is a frequent task in remote sensing. Random Forest (RF) and Support Vector Machine (SVM) are the two most well-known and recurrently used methods for this task. In this paper, we evaluate the pros and cons of using an RF-based kernel (RFK) in an SVM compared to using the conventional Radial Basis Function (RBF) kernel and standard RF classifier. A time series of seven multispectral WorldView-2 images acquired over Sukumba (Mali) and a single hyperspectral AVIRIS image acquired over Salinas Valley (CA, USA) are used to illustrate the analyses. For each study area, SVM-RFK, RF, and SVM-RBF were trained and tested under different conditions over ten subsets. The spectral features for Sukumba were extended by obtaining vegetation indices (VIs) and grey-level co-occurrence matrices (GLCMs), the Salinas dataset is used as benchmarking with its original number of features. In Sukumba, the overall accuracies (OAs) based on the spectral features only are of 81.34 % , 81.08 % and 82.08 % for SVM-RFK, RF, and SVM-RBF. Adding VI and GLCM features results in OAs of 82 % , 80.82 % and 77.96 % . In Salinas, OAs are of 94.42 % , 95.83 % and 94.16 % . These results show that SVM-RFK yields slightly higher OAs than RF in high dimensional and noisy experiments, and it provides competitive results in the rest of the experiments. They also show that SVM-RFK generates highly competitive results when compared to SVM-RBF while substantially reducing the time and computational cost associated with parametrizing the kernel. Moreover, SVM-RFK outperforms SVM-RBF in high dimensional and noisy problems. RF was also used to select the most important features for the extended dataset of Sukumba; the SVM-RFK derived from these features improved the OA of the previous SVM-RFK by 2%. Thus, the proposed SVM-RFK classifier is as at least as good as RF and SVM-RBF and can achieve considerable improvements when applied to high dimensional data and when combined with RF-based feature selection methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3