Identification of the Best Hyperspectral Indices in Estimating Plant Species Richness in Sandy Grasslands

Author:

Peng YuORCID,Fan Min,Bai Lan,Sang Weiguo,Feng Jinchao,Zhao Zhixin,Tao Ziye

Abstract

Numerous spectral indices have been developed to assess plant diversity. However, since they are developed in different areas and vegetation type, it is difficult to make a comprehensive comparison among these indices. The primary objective of this study was to explore the optimum spectral indices that can predict plant species richness across different communities in sandy grassland. We use 7339 spectral indices (7217 we developed and 122 that were extracted from literature) to predict plant richness using a two-year dataset of plant species and spectra information at 270 plots. For this analysis, we employed cluster analysis, correlation analysis, and stepwise linear regression. The spectral variability within the 420–480 nm and 760–900 nm ranges, the first derivative value at the sensitive bands, and the normalized difference at narrow spectral ranges correlated well with plant species richness. Within the 7339 indices that were investigated, the first-order derivative values at 606 and 583 nm, the reflectance combinations on red bands: (R802 − R465)/(R802 + R681) and (R750 − R550)/(R750 + R550) showed a stable performance in both the independent calibration and validation datasets (R2 > 0.27, p < 0.001, RMSE < 1.7). They can be regarded as the best spectral indices to estimate plant species richness in sandy grasslands. In addition to these spectral variation indices, the first derivative values or the normalized difference of the sensitive bands also reflect plant diversity. These results can help to improve the estimation of plant diversity using satellite-based airborne and hand-held hyperspectral sensors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3