Processing Thermal Infrared Imagery Time-Series from Volcano Permanent Ground-Based Monitoring Network. Latest Methodological Improvements to Characterize Surface Temperatures Behavior of Thermal Anomaly Areas

Author:

Sansivero Fabio,Vilardo GiuseppeORCID

Abstract

In this technical paper, the state-of-art of automated procedures to process thermal infrared (TIR) scenes acquired by a permanent ground-based surveillance system, is discussed. TIR scenes regard diffuse degassing areas at Campi Flegrei and Vesuvio in the Neapolitan volcanic district (Italy). The processing system was developed in-house by using the flexible and fast processing Matlab© environment. The multi-step procedure, starting from raw infrared (IR) frames, generates a final product consisting mainly of de-seasoned temperatures and heat fluxes time-series as well as maps of yearly rates of temperature change of the IR frames. Accurate descriptions of all operational phases and of the procedures of analysis are illustrated; a Matlab© code (Natick, Massachusetts, U.S.A.) is provided as supplementary material. This product is ordinarily addressed to study volcanic dynamics and improve the forecasting of the volcanic activity. Nevertheless, it can be a useful tool to investigate the surface temperature field of any areas subjected to thermal anomalies, both of natural and anthropic origin.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3